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The Infinite Curvature Limit of AdS/CFT1

Enrique Álvarez2,3

Some kinematical speculations on the infinite curvature limit of the conjectured duality
of Maldacena between 10-dimensional strings living in AdS5 × S5 and an ordinary
4-dimensional quantum field theory, namelyN = 4 super Yang–Mills with gauge group
SU (N ), are given.
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1. INTRODUCTION

The usual AdS/CFT correspondence relates strings living on a manifold of
curvature

R ∼ 1

l2
(1)

to an ordinary four-dimensional conformal field theory (CFT) with gauge coupling
g given in terms of the string coupling constant, gs, by

g = g1/2
s (2)

The ’t Hooft coupling is

λ ≡ g2 N ≡ gs N (3)

Both the ’t Hooft coupling and the effective string tension are given in terms of
the string length l2

s ≡ α′ by

λ1/2 = l2

l2
s

∼ Teff (4)
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906 Álvarez

and the 10-dimensional Newton constant is

κ2
10 ∼ l8

p = g2
s l8

s ∼ l8

N 2
(5)

The correspondence is usually studied in the low curvature regime in which

l

ls
	 1 (6)

In this regime strings are believed to be well approximated by supergravity, but
CFT is strongly coupled. Many nontrivial checks are however possible owing
to the existence of gauge invariant operators protected by supersymmetry whose
correlators are total or partially determined through kinematics. On the string side
these correlators are determined by computing the action for the relevant fields in
terms of arbitrary sources at the conformal boundary.

The opposite limit, i.e.,

l

ls

 1 (7)

corresponds to effectively tensionless strings in a strongly curved (and, as we shall
see, somewhat singular) background. The corresponding CFT is, however, in the
perturbative regime.

On the string theory side, however, it is not even clear what is the meaning of
the sources, and it is not known how to decode the information suposedly provided
by the preturbative CFT.

The purpose of the present note is the quite modest one of discussing the high
curvature limit of AdS, and to argue that it is none other than the light cone itself.

2. THE INFINITE CURVATURE LIMIT OF CONSTANT
CURVATURE SPACES

Constant curvature spaces of any signature can be understood (cf. for example,
Alvarez, 2003) as hypersurfaces of flat n-dimensional space with metric

ds2 =
n∑

a=1

εa dx2
a (8)

where all εa = ±1. The signs are arbitrary, except for the condition that at least one
coordinate, but not all of them, has got to be time-like, which in our conventions
means positive sign.

Calling xn−1 one of the time-like coordinates, and xn one of the space-like
ones, this means that the metric enjoys the term

dx2
n−1 − dx2

n (9)
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The equation determining the surface itself is

n∑
a=1

εa x2
a = ±l2 (10)

Here the length scale � determined the curvature through

R = ±n(n + 1)

l2
(11)

All these manifolds enjoy a maximal group of isometries, which is a real form of
SO(n). The Killings are given by

Lab ≡ εa xa∂b − εb xb∂a (12)

(no Einstein implicit sum convention is applied in this definition). Horospheric
coordinates are defined by

x− ≡ xn − xn−1

z ≡ l

x−

yi ≡ zxi i = 1 . . . n − 2 (13)

The metric reads in general

ds2 =
∑

i εi dy2
i ∓ l2dz2

z2
(14)

The case corresponding to our present interest is when

εi = −1∀i (15)

It has isometry group SO(1, n) and metric

ds2 = − ∑
i dy2

i ∓ l2dz2

z2
(16)

The lorentzian form is de Sitter space, and the euclidean form is what is usually
called euclidean Anti de Sitter, although it could equally well be called euclidean
de sitter. (There are no euclidean versions with isometry group SO(2, n).)

Written in this form, it is quite obvious that when l → 0, which corresponds
to the equation

x2
n−1 −

n−2∑
i=1

x2
i − x2

n = 0 (17)

is the light cone of the origin in ordinary n-dimensional Minkowski space, which
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we will denote by N±(0), with metric

ds2 = − ∑
i dy2

i

z2
(18)

3. LIFE ON THE LIGHT CONE

The local structure of the light cone is Sn−2 × R
+, and a point in N+ can be

specified by (x0, ni ), where x0 ∈ R
+ and �n2 = 1 is a point on the unit (n − 2)-

dimensional sphere, Sn−2, that is, an (n − 1)-dimensional structure. The light cone
can be visualized as an Sn−2 sphere of radius x0.

The induced metric hij is, however, degenerate (i.e., as a matrix it has rank
n), because the time differential is totally absent from the line element:

ds2
+ = x2

0 d
2
n−2 (19)

where d
2
n is the metric on the unit n-sphere, Sn , which in terms of angular

variables, reads

d
2
n ≡ dθ2

n − sin θ2
n dθ2

n−1 + · · · + sin θ2
n sin θ2

n−1 . . . sin θ2
2 dθ2

1 (20)

This means that, although singular as a metric on N+, the metric is perfectly regular
(actually the standard one) as a metric on the (n − 2)-spheres t = constant.

The invariant volume element, however, vanishes because of the fact that
√

h = 0 (21)

Remarkably enough, and in spite of some statements on the contrary, the com-
plete set of isometries of the three-dimensional metric (20) includes the full four-
dimensional Lorentz group, SO(1, 3).4 This should be quite obvious from our
limiting process of the previous paragraph.

The six Killing vectors with factorizable coeficients which generate SO(1, 3)
are actually given by

J1 = cos φ
∂

∂θ
− cot θ sin φ

∂

∂φ
(22)

What it is perhaps not immediatly obvious is that this is not the full history; it will
be shown in the next section that there is actually an infinite dimensional group of
isometries.

Also interesting are those transformations that leave invariant the metric up
to a Weyl rescaling. Those are the conformal isometries which in four dimensions

4 Isometries are well-defined, even for singular metrics, through the vanishing Lie-derivative condition
£(k)gµν = 0, reflecting the invariance of the metric under the corresponding one-parametric group of
diffeomorphisms, although of course this is not equivalent to ∇µkν + ∇νkµ = 0 because the covariant
derivative (i.e., the Christoffel symbols) is not well defined owing to the absence of the inverse metric.
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span the group called by Penrose and Rindler the Newman–Unti (NU) group (cf.
Penrose and Rindler, 1984) i.e.,

x0 → F(x0, z, z̄)

z → az + b

cz + d
(23)

The NU group is an infinite dimensional extension of the Möbius group.

4. DEGENERATE HOROSPHERIC COORDINATES

It could appear curious that when writing the metric of the cone N+ in terms
of the degenerate horospheres as in Eq. (18) translation invariance is apparent in
the coordinates (y1, y2). Physically what happens is that those coordinates are a
sort of stereographic projection, singular when x0 = x3. The exact relationship
between cartesian and horospheric coordinates in the infinite curvature limit is

x0 = 1

2z

(
y2

T + 1
)

x3 = 1

2z

(
y2

T − 1
)

xT = yT

z
(24)

where the subscript transverse refers to the (1, 2) labels: yT ≡ (y1, y2). It is worth
pointing out that the coordinate z has got dimensions of energy whereas the yT are
dimensionless.

Horospheric coordinates then break down when x0 = x3; that is, when z =∝.
It is a simple matter to recover the Killings corresponding to the Lorentz subgroup:

J1 = −zy1
∂

∂z
− 1

2
(y2

1 − y2
2 − 1)

∂

∂y1
+ y1 y2

∂

∂y2

J2 = −zy2
∂

∂z
− y1 y2

∂

∂y1
+ y2

1 − y2
2 − 1

2

∂

∂y2

J3 = y2
∂

∂y1
− y1

∂

∂y2

K1 = y2z
∂

∂z
− y1 y2

∂

∂y1
+ y2

2 − y2
1 − 1

2

∂

∂y2

K2 = −y1z
∂

∂z
− y2

2 + 1 − y2
1

2

∂

∂y1
− y1 y2

∂

∂y2

K3 = z
∂

∂z
+ y1

∂

∂y1
+ y2

∂

∂y2
(25)
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But there are more Killing vectors. First of all, the two translational ones. obvious
in these coordinates,

P1 ≡ ∂

∂y1

P2 ≡ ∂

∂y2
(26)

and some others, such as

L1 = ey1

(
cos y2

(
z

∂

∂z
+ ∂

∂y1

)
+ sin y2

∂

∂y2

)

L2 = ey1

(
sin y2

(
z

∂

∂z
+ ∂

∂y1

)
− cos y2

∂

∂y2

)

J3 = ey2

(
cos y1

(
z

∂

∂z
+ ∂

∂y2

)
+ sin y1

∂

∂y1

)

L4 = ey2

(
sin y1

(
z

∂

∂z
+ ∂

∂y2

)
− cos y1

∂

∂y1

)

L5 = e−y1

(
cos y2

(
z

∂

∂z
− ∂

∂y1

)
+ sin y2

∂

∂y2

)

L6 = e−y1

(
sin y2

(
z

∂

∂z
− ∂

∂y1

)
− cos y2

∂

∂y2

)

L7 = e−y2

(
cos y1

(
z

∂

∂z
− ∂

∂y2

)
+ sin y1

∂

∂y1

)

L8 = e−y2

(
sin y1

(
z

∂

∂z
− ∂

∂y2

)
− cos y1

∂

∂y1

)
(27)

More Killings are gotten through commutation; the boost K3, in particular, raises
powers of the coordinates when acting on Ls:

[K3, L1] = ey1

(
(y1 cos y2 − y2 cos y2)z

∂

∂z
+ ((y1 − 1) cos y2 − y2 cos y2)

× ∂

∂y1
+ ((y1 − 1) cos y2 + y2 cos y2)

∂

∂y2

)
≡ Q1

[K3, L2] = ey1

(
(y1 cos y2 − y2 cos y2)z

∂

∂z
+ (−(y1 − 1) cos y2 + y2 cos y2)

× ∂

∂y2
+ ((y1 − 1) cos y2 + y2 cos y2)

∂

∂y1

)
≡ Q2 (28)
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Clearly the process never ends. Commuting again with K3 produces terms in y2
1 ey1

which are not found amongst the existing generators. The isometry group is then
infinite dimensional.

It is actually possible to give the general solution of the Killing equation in
closed form using horospheric coordinates. Given an arbitrary analytic function of
the complex variable y1 + iy2, for example f (y1 + iy2), it is given by

k ≡
(

∂2

∂y2
1

Re f

)
z

∂

∂z
+

(
∂

∂y1
Re f

)
∂

∂y1
−

(
∂

∂y2
Re f

)
∂

∂y2
(29)

It is now clear that the isometry group of the four-dimensional light cone N+
is an infinite dimensional group, which includes the Lorentz group as a subgroup.

We find this to be a remarkable situation.

5. CONCLUSION: SIGMA MODELS ON SINGULAR MANIFOLDS

We can expect this approximation to work for length scales much larger than
the one defined by the curvature inverse, i.e., it is a low energy approximation,
valid for E 
 l−1.

The (singular) propagator boundary–boundary we get in this way (when l ≡
ε → 0) is

�b−b ≡ εn+1�(n − 1)

π (n−1)/2�
(

n−1
2

) zn−1

|�y − �y′|n−2
(30)

It is quite difficult however to make progress along these lines in a sigma model
approach. For example, the usual representation of AdS3 as a Wess–Zumino–Witten
(WZW) model leads to the lagrangian:

L = 2k

(
1

u2
∂u∂̄u + u2∂γ̄ ∂̄γ

)
(31)

(where (u, γ , γ̄ ) are coordinates descibed in detail in Giveon and Kutasov, 2002).
The parameter

k = l2 (32)

so that in the degenerate limit k = 0. But this is bad, because the central charge of
the underlying CFT is

c = 3k

k − 2
(33)

so that usual considerations are restricted to k > 2. More work on these issues can
be, however, rewarding.
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912 Álvarez

ACKNOWLEDGMENTS

I am grateful to Edgar Gunzig and Enric Verdaguer for the invitation to the
marvellous site of Peyresq and to Jaume Garriga and Enric Verdaguer for useful
discussions.

This work was partially supported by the European Commission (HPRN-CT-
200-00148) and FPA2003-04597 (DGI del MCyT, Spain).

REFERENCES

Alvarez, E., Conde, J., and Hernandez, L. (2003). Codimension two holography. Nuclear Physics B
663, 365 [arXiv:hep-th/0301123]. Goursat’s problem and the holographic principle [arXiv:hep-
th/yymmnnn].

Avis, S. J., Isham, C. J., and Storey, D. (1978). Quantum field theory in Anti-De Sitter Space-Time.
Physics Review D: Particles and Fields 18, 3565.

Brown, J. D. and York, J. W. (1993). Quasilocal energy and conserved charges derived from the
gravitational action. Physics Review D: Particles and Fields 47, 1407.

Giveon, A. and Kutasov, D. (2002). Notes on AdS(3). Nuclear Physics B 621, 303 [arXiv:hep-
th/0106004].

Maldacena, J. (1998). The large N limit of superconformal field theories and supergravity. Advances
in Theoretical Mathematics and Physics 2:231–252, hep-th/9711200.

Penrose, R. and Rindler, W. (1984). Spinors and Space-Time. 1. Two Spinor Calculus and Relativistic
Fields, Cambridge.

Witten, E. (1998a). Anti-de Sitter space and holography. Advances in Theoretical Mathematics and
Physics 2, 253 [arXiv:hep-th/9802150].

Witten, E. (1998b). Anti-de Sitter space, thermal phase transition, and confinement in gauge theories.
Advances in Theoretical Mathematics and Physics 2, 505 [arXiv:hep-th/9803131].


